Vacuum Measurement


Warm up car and set idle to nominal. For my '77 280z it is 800rpm.


Here are the two connection points for the tach signal.


Connect vacuum meter to intake manifold. I found the connection to the brake booster to be easiest.

Here are the results for my 280z with a worn old engine:

RPM Vacuum (in. of Hg)
600 17
800 18.5
1000 19
1200 19
1600 20
2300 19.5 to 20.5
   
Reving shoots down to between 5" and 10" on inital RPM rise,  holds at 20" at high RPM then over shoot to 24" on throttle release

Typical vacuum readings at idle are 17" to 21" of Hg. Performance cams can lower this.

Common Problems

  1. Slow up and down cycles may indicate fuel to air mixture problem
  2. Low readings may indicate a leak in the intake manifold. (gaskets, hoses, etc)
  3. Exhaust restrictions can cause low readings (plugged cat, crushed pipes, clogged muffler, etc)
  4. Carbon in engines can occasionally cause valves to stick. This will result in transient vacuum changes
  5. A burned exhaust valve may cause lower readings
  6. Fluctuating readings at idle may indicate worn head components (stems, guides, cam, etc)
  7. Fluctuating readings while cruising may indicate worn valve springs

Trouble-shooting with a vacuum gauge

Idle (Normal Vacuum)

An engine in good condition should have a gauge reading of 17 to 21 and hand should be steady. 

Idle (consistent but very low reading)

A steady reading below 5 indicates a leaky manifold, manifold gasket or carburetor gasket. Also check heat riser.

Idle (consistent but low)

  When gauge needle is steady at about 8 to 14 it generally indicates incorrect valve timing. 

Idle (consistent but mildly low)

  A reading lower than normal with the hand steady indicates that rings are in poor condition.

Idle (consistent but mildly low reading)

If normal is 20 inches and needle should go to approx 14 check timing. Spark may be retarded.

Idle (consistent but slightly low)

A reading of 13 to 16 generally indicates incorrect ignition timing. 

Idle (with random mild drop)

When the hand drops occasionally from 3 to 5 points, from the normal reading, it generally indicates a sticking valve.

Idle (with consistent mild drop)

 A burned valve will cause the needle to drop back several divisions each time that particular cylinder operates.

Idle (with consistent slight drop)

Leaking valves also show up on the gauge by the needle dropping back 3 or 4 divisions, whenever that valve opens.

Idle (with occasional mild drop)

Occasional drop as cylinder is firing may denote valve open or plug not firing.

 

Idle (constant mild drift)

  Poor adjustment of the carburetor will cause the needle to float slowly between 12 and 16.

Idle (mildly low with constant small drift)

When needle drifts slowly between 14 and 16 it generally indicates that plug gaps are too close, or breaker points are not properly synchronized.

Idle (with constant large fluctuations)

This action usually indicates a leaky head gasket.

Idle (with fast vibration)

When needle has a fast vibration between appoximately 14 and 19 it indicates loose valve guides.

Cruising (big variations)

Wide variations of needle increasing with motor speed indicates weak, or broken valve springs.

 

 

Opening and closing throttle quickly

reading on an engine in good condition should drop to 2 and come back to 25.

Idle (slow steady drop)

Normal reading at start, but gradually drops, indicates choked muffler.

 

Wayne's World

The best place to measure manifold vacuum is by using a "T" fitting in the vacuum line going to the FPR. The vacuum on this line directly controls the fuel pressure. If you have 33 PSI of fuel pressure the manifold vacuum should be ~ 5 inches. One of the gauges may be out of calibration. Don't panic!

Start the engine and remove the vacuum line from the FPR and plug the end of the hose with a golf tee. You now have 0 inches of vacuum at the FPR vacuum port and the fuel pressure should be 36 to 37 PSI. Record the pressure you actually see at this time.

Now with 16" of vacuum you should have 29 to 30 PSI of fuel pressure. You say you get 33 PSI so your gauge may be out (reading high) by 3 to 4 PSI. If you get ~ 40 PSI with the vacuum line to the FPR disconnected then your gauge is out, so just remember to subtract the difference.

Now there is one other piece of science you have to deal with. Altitude! The 36 to 37 PSI figure is based on being at sea level! I think that for every 1,000 ft above sea level the fuel pressure should go up by 1 PSI. I had an altitude correction table but I can't find it now (the altitude does not change frequently around here anyway). So if you live around 3,000 ft then your pressure reading could be perfectly within spec. Check with your local airport or anyone you know that is a pilot and let us know your altitude.

Your idle speed will affect all of this also. It should be more around 700 to 750 RPM. As idle speed goes up manifold vacuum will go down slightly. Also at 800 to 850 RPM the mechanical advance counter weights will start to affect the timing.

The idle contacts in the TVS should be closed also. This is why, when you set the timing, you are supposed to put a jumper in the TVS connector OR make certain that the TVS is adjusted correctly and that you (and the ECU) sees continuity on pins 29 and 30 of the ECU connector at idle with the throttle closed.

This is covered in the FSM under Throttle Vane Switch Tests (EF-26 and EF-22) and has pictures of what pins to test in the connector. So while you are checking pins 29 and 30 check the resistance of the CHTS / WTS on pin 14 as previously requested.

The resistance of 232 ohms is a bit low, the ECU may think the coolant temp is above 200 F, 470 ohms would be ~ 160 F, But the most important thing, at this point, is to measure the resistance seen at pin 14 and chassis ground.

Have you looked into trying to find an empty spot in the thermostat housing to install the CHTS / WTS?

If the cold start valve isn't hooked up how about disconnecting the fuel line going to it and putting a plug on the line just to make certain the CSV is not leaking? If it is still installed in the intake has it got a good gasket between it and the manifold?

You have come a long way on this project and I hope that I have helped you. Tell your significant other to buy you a bouquet of flowers or a case of motor oil as a reward for your efforts!


Wayne Monteath

 
Reading a Vacuum Gauge
by Ken Layne
   

August 2001. Mastering the Basics

There's nothing more basic than the fact that an engine is just a big air pump. It draws in air by creating a low-pressure area in the intake manifold and cylinders, compresses the air, mixes in a little gasoline, lights a fire, generates heat and pressure and finally pumps out the spent exhaust. Our preoccupation today with things electronic sometimes makes us overlook old-fashioned mechanical symptoms of problems and the mechanical test equipment used to troubleshoot them. Vacuum gauges are often in this category, but the insight that a vacuum gauge can provide is as valuable today as it was 30, 40 or 50 years ago.

Remember that engine vacuum is just air pressure lower than atmospheric pressure. The starting point to evaluate engine vacuum is the intake manifold. When you connect a gauge to a tap on the intake, you're measuring manifold vacuum. Note that vacuum will vary in different areas of the engine, such as above or below the throttle valve and right at the intake and exhaust ports.

Vacuum drawn from an opening ahead of the throttle is called ported vacuum. Throttle opening affects ported vacuum opposite to the way it affects manifold vacuum. For example, at closed throttle, manifold vacuum is at its peak. But there is no significant vacuum at a port ahead of the throttle plate when the throttle is closed. Vacuum appears at such a port only when the throttle opens.

It's important to remember that manifold vacuum is used to power vehicle systems that need a steady supply of low-pressure air under all engine operating conditions. These systems include power brake boosters, a/c vacuum motors and some emissions controls.
Ported vacuum is used to control vehicle systems in relation to engine load. These include old-fashioned distributor vacuum advance diaphragms and carburetor assist devices. They also include many emissions control devices and transmission shift points. Under some engine load conditions, ported vacuum may equal manifold vacuum, but it can never exceed it.

Get Out the Gauge
Most vacuum gauges are graduated in inches of mercury (in.-Hg) and millimeters of mercury (mm-Hg). Some also show the modern metric scale of kilopascals (kPa). For comparison, 1 in.-Hg equals 25.4mm-Hg, or about 3.4 kPa. For this review, we'll stick to in.-Hg, or simply inches of vacuum.

Because engine vacuum is based on comparison with atmospheric pressure, it varies with altitude just as atmospheric (barometric) pressure does. The following table shows that as altitude increases, vacuum decreases about 1 inch for every 1000 feet above sea level.

Inches of Altitude Vacuum 
Sea level-1000 ft. 18-22
1000-2000 ft. 17-21
2000-3000 ft. 16-20
3000-4000 ft. 15-19
4000-5000 ft. 14-18
5000-6000 ft. 13-17

Normal manifold vacuum at idle for an engine in good condition is about 18 to 22 in.-Hg. Manufacturers used to publish vacuum specs in service manuals, but this isn't as common as it was years ago. Still, the physics of internal combustion haven't changed in a hundred years, so the guidelines given here are a good starting point for vacuum gauge troubleshooting. Your best analysis based on vacuum readings will come from your own experience, however. As you use a vacuum gauge on different engines, you'll learn what's typical for one model compared to another. Some engines have reputations as low-vacuum motors; others are unusually higher than average. Experience is your best teacher.

Cranking Vacuum & Speed Tests
You can get a quick basic appraisal of engine condition by connecting a vacuum gauge to the manifold and a tachometer to the ignition to check vacuum and rpm at cranking speed. Warm up the engine first, then shut it down and connect your test equipment. Close the throttle and disable the ignition, or use a remote starter so the engine won't start. Crank the engine for 10 to 15 seconds and observe the vacuum and tach readings.

Note that different engines produce different cranking vacuum readings. Some carmakers publish specifications; others don't. Again, experience will be your best guide. What you're looking for, most importantly, is steady vacuum and cranking speed.

If the cranking speed is steady (about 200 rpm) and vacuum also is steady (around 5 inches), the engine most likely is in good mechanical condition. If rpm and vacuum are uneven, the cylinders aren't pumping equally. The engine probably has leakage past the valves, rings or head gasket. If the vacuum reading is pretty steady but cranking speed is not, you're probably looking at a damaged flywheel ring gear or starter. If the cranking speed is normal or high but vacuum is low and slightly uneven, the engine probably has low compression or retarded valve timing. A jumped timing chain or belt is a common cause here.

The cranking vacuum test also can provide a quick test for PCV restrictions. Perform the test and note the average vacuum reading. Then pinch the hose to the PCV valve closed with your pliers and repeat the test. If the PCV system is clear, vacuum should increase. If it doesn't, check the PCV system closer for restrictions.

What Idle Tests Can Reveal
You can zero in on several basic mechanical problems by taking a quick look at manifold vacuum. Warm the engine to normal temperature-get it really warm-and connect your vacuum gauge. Make sure you connect to a manifold vacuum tap and not to ported vacuum. Connecting a tachometer also is a good idea.

Just to be sure that the evaporative emissions system doesn't interfere with vacuum testing, disconnect and plug the canister purge hose and its manifold port. If you're testing an OBD II car, check for evap-related DTCs when you finish testing to be sure none set.

Run the engine at idle, low cruise (1800 to 2200 rpm) and high cruise (2500 to 3000 rpm). Note the vacuum readings, and any fluctuations, at each speed. Next, hold engine speed steady at about 2500 rpm for 15 seconds and read the gauge. Now release the throttle and watch the gauge as the speed drops. The vacuum reading should jump as the throttle closes, then drop back to its normal idle reading. If vacuum doesn't increase at least a couple of inches when you release the throttle, you may be looking at worn rings, cylinders or valves.
Idle vacuum for most engines is about 18 to 22 in.-Hg, but some may produce only 15 to 17 inches at idle. (Remember what we said about experience.) If vacuum is steady and within these ranges, the engine and fuel and ignition systems are operating normally.

If vacuum is steady at idle but lower than normal, the ignition or valve timing may be retarded. Low compression, an intake leak or tight valves also can cause low vacuum at idle.

If the vacuum reading fluctuates within the normal range-the gauge needle bounces around a lot-uneven compression (broken rings or leaking valves or head gasket in one or two cylinders) is a likely culprit. 
An uneven air/fuel mix, erratic ignition timing, a misfire, misadjusted valves or a manifold leak near one or two cylinders also are possible causes.

If vacuum drops intermittently at idle, one or more valves may be sticking open or dragging. Higher-than-normal vacuum at idle is a common clue to overly advanced ignition timing, while low vacuum can indicate retarded timing.

Low vacuum also can be an immediate clue to a plugged exhaust. To check further, run the engine at about 2500 rpm for about 15 seconds. If vacuum drops during this period and does not increase when you close the throttle, you're almost certainly looking at a restricted exhaust.

Vacuum Fluctuations & Power Balance
Several of the guidelines in this article have distinguished between steady vacuum gauge readings and fluctuating readings, where the gauge needle bounces up and down erratically. This may seem secondary-almost inconsequential-but it's an important distinction. A steady but abnormal vacuum reading indicates a problem common to all cylinders. Things like incorrect ignition timing or an old, tired, high-mileage engine affect vacuum equally for all cylinders. A bouncing needle, however, usually indicates that the problem is localized to one or just a few cylinders. Here's where power balance testing enters the picture.

Compression testing on many late-model engines is flatly impractical from a labor standpoint for a quick engine evaluation. That's especially true on some of the weird vans for which removing and reinstalling spark plugs is a two-hour job. It's relatively quick and easy, however, to connect a vacuum gauge to the manifold and your engine analyzer to the ignition system.

If your initial vacuum tests produce gauge fluctuations, you have a definite indication that the problem is limited to just one or a few cylinders. In these instances, a power balance test can help you pinpoint those cylinders and the condition they're in. Does the engine need a valve job (fluctuating vacuum) or a complete engine exchange due to universally worn rings and cylinders (steadily low vacuum)? Combine modern power balance testing with traditional vacuum analysis and you'll have the answer.

The author would like to thank the staff members of The DMV Clinic in Santa Cruz, California, for their help with this article.

 

 

Well, many people have forgotten about this simple and easy test to perform on an Engine to see what exactly is going on with your Auto.

This Page will either refresh your memory on how to read a Vacuum Tester or Introduce you to the Procedure.

These Gauges can be purchased around the internet, or Auto Part Stores, and a Nice one can be purchased from around $20-25 Dollars, but many are around $10.00 off-line.



Setting up the Gauge is Easy.  Either Hook it up the the PCV Port on your Carb, and on a Fuel Injected Engine, use the normally supplied "Tee" to tie into the system.  If you don't, your Engine may not read the correct vacuum due to the RPM changes.


 


Normal Stock Engine

Steady Needle {17-22 Hg} (Race Engine will be less!)

 


Incorrect Valve Timing
Low Steady Reading (Late Timing, Low Compression, Sticking Throttle Valve, Carb or Manifold Vacuum Leak.)
 



Blown Head Gasket
Fluctuating Needle as RPM Increases (Ignition Miss, Blown Head Gasket, Leaking Valve, Weak or Broken Valve Spring.)

 


Plugged Exhaust
Gradual Drop of Needle at Idle (Plugged or Stopped Up Exhaust, Excessive Back pressure [Extreme Cases Engine Will Die at Idle].)

 


Sticking Valves
Intermittent Fluctuation at Idle (Ignition Miss, Sticking Valves, Lifter Bleeding Off [Hydraulic], or Just a Big Camshaft.)

 


Carb Adjustment Required
Drifting Needle (Adjust Carb or Check for Small Vacuum Leaks.)
 



Leaking or Burnt Valves
Steady But Needle Drops Often (Incorrect Valve Setting or Burnt Valve.)

 


Worn Valve Guides
Excessive Vibration that Steadies Out as RPM Increases (Worn Valve Guides.)


Hit Counter